

MANONMANIAM SUNDARANAR UNIVERSITY – TIRUNELVELI PG **PROGRAMMES**

OPEN AND DISTANCE LEARNING(ODL) PROGRAMMES

(FOR THOSE WHO JOINED THE PROGRAMMES FROM THE ACADEMIC YEAR 2023–2024)

M.Sc. CHEMISTRY

Semester	Course	Title of the Course	Course Code	Course Type
	Core I	Organic Reaction Mechanism - I	SCHM11	Theory
	Core II	Structure and Bonding in Inorganic Compounds	SCHM12	Theory
	Core III	Organic Chemistry - Practical - I	SCHP11	Practical
I	Core IV	Physical Chemistry - Practical	SCHP12	Practical
	Elective-I	Nano Materials and Nano Technology	SCHE11	Theory
	Elective-II	Molecular Spectroscopy	SCHE12	Theory

ORGANIC REACTION MECHANISM - I

Course	UNIT-I: Methods of Determination of Reaction Mechanism: Reaction
Outline	intermediates, The transition state, Reaction coordinate diagrams,
	Thermodynamic and kinetic requirements of reactions, Hammond
	postulate. Methods of determining mechanism: Kinetic methods of
	determination: Rate law - Primary and secondary isotope effect. Non-
	Kinetic methods of determination: Testing and Trapping of intermediates,
	Isotopic labeling, Cross-over experiment, Product analysis and stereo
	chemical evidence.
	Effect of structure on reactivity: Hammett and Taft equations. Linear free
	energy relationship, substituent and reaction constants.

UNIT-II: Aromatic and Aliphatic Electrophilic Substitution: Aromaticity: Aromaticity in benzenoid, non-benzenoid, heterocyclic compounds and annulenes.

Aromatic electrophilic substitution: Orientation and reactivity of di- and polysubstituted phenol, nitrobenzene and halobenzene, partial rate factor Reactions involving nitrogen electrophiles: nitration, nitrosation and diazonium coupling; Sulphur electrophiles: sulphonation; Halogen electrophiles: chlorination and bromination; Carbon electrophiles: Friedel-Crafts alkylation, acylation and arylation reactions.

Aliphatic electrophilic substitution Mechanisms: SE2 and SEi, SE1-Mechanism and evidences.

UNIT-III: Aromatic and Aliphatic Nucleophilic Substitution:

Aromatic nucleophilic substitution: Mechanisms - S_NAr , S_N1 and Benzyne mechanisms - Evidences - Reactivity, Effect of structure, leaving group and attacking nucleophile. Reactions: Oxygen and Sulphurnucleophiles, Bucherer and Rosenmund reactions, Von Richter, Sommelet-Hauser and Smiles rearrangements.

Aliphatic Nucleophilic Substitution: S_N1 , ion pair, S_N2 mechanisms and evidences. Aliphatic nucleophilic substitutions at an allylic carbon, aliphatic trigonal carbon and vinyl carbon. S_N1 ' S_N2 ' and S_Ni ' mechanism and evidences, Swain- Scott, Grunwald-Winstein relationship - Ambident nucleophiles.

UNIT-IV: Stereochemistry-I: Introduction to molecular symmetry and chirality – axis, plane, center, alternating axis of symmetry. Optical isomerism due to asymmetric and dissymmetric molecules with C, N, S based chiral centers. Optical purity, prochirality, enantiotopic and diastereotopic atoms, groups, faces, axial and planar chirality, chirality due to helical shape, methods of determining the configuration.

Racemic modifications: Racemization by thermal, anion, cation, reversible formation, epimerization, mutarotation. D, L system, Cram's and Prelog's rules: R, S-notations, proR, proS, side phase and re phase Cahn-Ingold-Prelog rules, absolute and relative configurations. Configurations of allenes, spiranes, biphenyls, cyclooctene, helicene, binaphthyls, ansa and cyclophanic compounds, exo-cyclic alkylidene-cycloalkanes. Topicity and

	prostereoisomerism, chiral shift reagents and chiral solvating reagents.
	Criteria for optical purity: Resolution of racemic modifications,
	asymmetric transformations, asymmetric synthesis, destruction.
	Stereoselective and stereospecific synthesis.
	UNIT-V: Stereochemistry-II: Conformation and reactivity of acyclic
	systems, intramolecular rearrangements, neighbouring group participation,
	chemical consequence of conformational equilibrium - Curtin-Hammett
	Principle. Stability of five and six-membered rings: mono-, di- and
	polysubstituted cyclohexanes, conformation and reactivity in cyclohexane
	systems. Fused and bridged rings: bicyclic, poly cyclic systems, decalins
	and Brett's rule.
	Optical rotation and optical rotatory dispersion, conformational
	asymmetry, ORD curves, octant rule, configuration and conformation,
	Cotton effect, axial haloketone rule and determination of configuration.
Recommended	1. J. March and M. Smith, Advanced Organic Chemistry, 5 th edition,
Text	John-Wiley and Sons.2001.
	2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt,
	Rinehart and Winston Inc., 1959.
	3. P.S.Kalsi, Stereochemistry of carbon compounds, 8 th edition, New
	Age International Publishers, 2015.
	4. P. Y. Bruice, Organic Chemistry, 7 th edn, Prentice Hall, 2013.
	 J.Clayden, N. Greeves, S. Warren, Organic Compounds, 2ndedition, Oxford University Press, 2014.
	Oxford University (1655, 2017.

STRUCTURE AND BONDING IN INORGANIC COMPOUNDS

Course Outline	UNIT I - CHEMICAL BONDING
	Valence Bond theory : Lewis structure – Concepts and VB theory of H_2
	molecule - Stereochemistry of hybrid orbitals - Calculation of s and p
	characters of equivalence and nonequivalence of hybrid orbitals -
	VSEPR theory.
	M.O. theory – Linear combination of Atomic orbitals (s – s, s – p, d –
	p, p – p and d –d overlapping) – σ , π , δ and quadruple bond. – M.O.
	diagrams of hetero nuclear diatomic molecules (CO, NO, HF) and
	triatomic molecules (BeH2, H2O, CO2) - Walsh diagrams - Structure
	and hybridization - Bents rule and apicophilicity.
	Ionic Bond: Lattice energy - Born-Lande equation, Born Haber cycle
	and Kapustinskii equation.

	UNIT-II: Structure of main group compounds and clusters:
	Structure of silicates - applications of Pauling's rule of electrovalence -
	isomorphous replacements in silicates – ortho, meta and pyro silicates –
	one dimensional, two dimensional and three-dimensional silicates.
	Structure of silicones, Structural and bonding features of B-N, S-N and
	P-N compounds; Poly acids – types, examples and structures; Borane
	cluster: Structural features of closo, nido, arachano and klado;
	carboranes, hetero and metalloboranes; Wade's rule to predict the
	tructure of borane cluster; main group clusters -zintl ions.
	UNIT-III: Solid state chemistry – I: Ionic crystals: Packing of ions in
	simple, hexagonal and cubic close packing, voids in crystal lattice,
	Radius ratio, Crystal systems and Bravais lattices, Symmetry operations
	in crystals, glide planes and screw axis; point group and space group.
	X-ray diffraction technique: Bragg's law, Powder diffraction method -
	Principle and Instrumentation.
	UNIT-IV: Solid state chemistry – II: Structural features of the crystal
	systems: Rock salt, zinc blende & wurtzite, fluorite and anti-fluorite,
	rutile and anatase, cadmium iodide and nickel arsenide; Spinels -normal
	and inverse types and perovskite structures. Crystal Growth methods:
	From melt and solution (hydrothermal, sol-gel methods) - principles
	and examples.
	UNIT-V: Band theory and defects in solids
	Band theory – features and its application of conductors, insulators and
	semiconductors, Intrinsic and extrinsic semiconductors; Defects in
	crystals - point defects (Schottky, Frenkel, metal excess and metal
	deficient) and their effect on the electrical and optical property; Linear
	defects and its effects due to dislocations and colour centers.
Recommended	1. A R West, Solid state Chemistry and its applications, 2ndEdition
Text	(Students Edition), John Wiley & Sons Ltd., 2014.2. A K Bhagi and G R Chatwal, A textbook of inorganic polymers,
	Himalaya Publishing House, 2001.
	3. L Smart, E Moore, Solid State Chemistry – An Introduction, 4 th Edition, CRC Press, 2012.
	4. K. F. Purcell and J. C. Kotz, Inorganic Chemistry; W.B. Saunders
	company: Philadelphia, 1977.J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry;
	4th ed.; Harper and Row: NewYork, 1983.

ORGANIC CHEMISTRY PRACTICAL-I

Course Outline	A. Qualitative analysis of Organic mixture (atleast six two	
	component mixtures):	
	Separation of organic mixtures	
	Elemental analysis	
	• Functional group(s) identification	
	Preparation of derivatives	
	• Physical properties determination (melting point and boiling point) for both components and their derivatives.	
	Analysis may be performed in micro (or) macro scale depending upon	
	the conditions of the laboratory.	
	B. For Class work:	
	Three component mixtures (Separation)	
Recommended Text	1. A.I. Vogel, Elementary Practical Organic Chemistry: Small Scale Preparations, Qualitative Organic Analysis, Quantitative Organic Analysis, Pearson Education, 2011.	
	2. K. Bansal Raj, Laboratory Manual of Organic Chemistry, New Age International, 2009.	
	3. V. Venkateswaran, R. Veeraswamy and A. R. Kulandaivelu, Basic Principles of Practical Chemistry, Sultan Chand & Sons, 2004.	
	4. V.K. Ahluwalia, and R. Aggarwal, Comprehensive Practical	
	Organic Chemistry, UniversitiesPress, 2004	

PHYSICAL CHEMISTRY PRACTICAL

Course Outline	UNIT-I: Conductivity Experiments
	1. Determination of equivalent conductance of a strong electrolyte & the
	verification of DHO equation.
	2. Verification of Ostwald's Dilution Law & Determination of pKa of a weak acid.
	3. Verification of Kohlrausch's Law for weak electrolytes.
	4. Determination of the equivalent conductance of a weak acid at
	different concentrations and verifying Ostwald dilution law.
	5. Calculation of the dissociation constant of the acid. Determination of
	the equivalent conductance of a strong electrolyte at different
	concentrations and examining the validity of the Onsager's theory as
	limiting law at high dilutions.
	6. Conductometric titration of a mixture of HCl and CH ₃ COOH Vs
	NaOH.
	7. Conductometric titration of NH ₄ Cl Vs NaOH.
	8. Conductometric titration of CH ₃ COONa Vs HCl.

	UNIT-II: Kinetics
	 Study the kinetics of acid hydrolysis of an ester; determine the temperature coefficient and also the activation energy of the reaction. Study the kinetics of the reaction between acetone and iodine in acidic medium by half-life method and determine the order with respect to
	iodine and acetone.
	UNIT-III: Phase diagram
	Construction of phase diagram for a simple binary system
	1. Naphthalene-phenanthrene
	2. Benzophenone- diphenyl amine.
Recommended Text	1. B. Viswanathan and P.S.Raghavan, Practical Physical Chemistry, Viva Books, New Delhi, 2009.
	2. Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S. Viswanathan Co. Pvt., 1996.
	3. V.D. Athawale and Parul Mathur, Experimental Physical Chemistry, New Age International (P) Ltd., New Delhi, 2008.
	4. E.G. Lewers, Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics, 2 nd Ed., Springer, New York, 2011.

NANO MATERIALS AND NANO TECHNOLOGY

Course Outline	UNIT-I: Introduction of nanomaterials and nanotechnologies:
	Introduction-role of size, classification-0D, 1D, 2D, 3D. consolidation
	of Nano powders. Features of nanostructures, Background of
	nanostructures. Techniques of synthesis of nanomaterials- Bottom -Up,
	Top-Down, Tools of the nanoscience. Applications of nanomaterials
	and technologies.
	UNIT-II: Synthetic Methods: Bonding and structure of the
	nanomaterials, Predicting the Type of Bonding in a Substance crystal
	structure. Metallic nanoparticles, Surfaces of Materials, Nanoparticle
	Size and Properties. Synthesis- Physical and chemical methods - inert
	gas condensation, arc discharge, laser ablation, sol-gel, solvothermal
	and hydrothermal-CVD-types, metallo organic, plasma enhanced, and
	low-pressure CVD. Microwave assisted and electrochemical synthesis.

	UNIT-III: Mechanical Properties of Nanomaterials: Mechanical
	properties of materials, theories relevant to mechanical properties.
	Techniques to study mechanical properties of nanomaterials, adhesion
	and friction, thermal properties of nanomaterials
	Nanoparticles: gold and silver, metal oxides: silica, iron oxide and
	alumina - synthesis and properties.
	UNIT-IV: Electrical Properties of Nanomaterials: Electrical
	properties, Conductivity and Resistivity, Classification of Materials
	based on Conductivity, magnetic properties, electronic properties of
	materials. Classification of magnetic phenomena. Semiconductor
	materials - classification-Ge, Si, GaAs, SiC, GaN, GaP, CdS,PbS.
	Identification of materials as p and n -type semiconductor-Hall effect -
	quantum and anomalous, Hall voltage - interpretation of charge carrier
	density. Applications of semiconductors: p-n junction as transistors and
	rectifiers, photovoltaic and photogalvanic cell.
	UNIT-V: Nano Composites: Nano thin films, nanocomposites.
	Application of nanoparticles in different fields. Core-shell nanoparticles -
	types, synthesis, and properties. Nanocomposites - metal- ceramic- and
	polymer-matrix composites-applications.
	Characterization - SEM, TEM and AFM - principle, instrumentation
	and applications.
Recommended Text	 S.Mohan and V. Arjunan, Principles of Materials Science, MJP Publishers, 2016. Arumugam, Materials Science, Anuradha Publications,2007. Giacavazzo et. al., Fundamentals of Crystallography, International Union of Crystallography. Oxford Science Publications, 2010 Woolfson, An Introduction to Crystallography, Cambridge University Press, 2012. James F. Shackelford and Madanapalli K. Muralidhara, Introduction to Materials Science for Engineers. 6th ed., PEARSON Press, 2007.

MOLECULAR SPECTROS COPY

Course Outline	UNIT-I: Rotational and Raman Spectroscopy: Rotational spectra of
	diatomic and polyatomic molecules. Intensities of rotational spectral
	lines, effect of isotopic substitution. Non-rigid rotators. Classical theory
	of the Raman effect, polarizability as a tensor, polarizability ellipsoids,
	quantum theory of the Raman effect, Pure rotational Raman spectra of
	linear and asymmetric top molecules, Stokes and anti-Stokes lines.
	Vibrational Raman spectra, Raman activity of vibrations, rule of mutual
	exclusion, rotational fine structure-Q and S branches, Polarization of
	Raman scattered photons.
	UNIT-II: Vibrational Spectroscopy: Vibrations of molecules,
	harmonic and anharmonic oscillators- vibrational energy expression,
	energy level diagram, vibrational wave functions and their symmetry,
	selection rules, expression for the energies of spectral lines,
	computation of intensities, hot bands, effect of isotopic substitution.
	Diatomic vibrating rotor, vibrational-rotational spectra of diatomic
	molecules, P, R branches, breakdown of the Born-Oppenheimer
	approximation. Vibrations of polyatomic molecules – symmetry
	properties, overtone and combination frequencies. Influence of rotation
	on vibrational spectra of polyatomic molecule, P, Q, R branches,
	parallel and perpendicular vibrations of linear and symmetric top
	molecules.
	UNIT-III: Electronic spectroscopy: Electronic Spectroscopy:
	Electronic spectroscopy of diatomic molecules, Frank-Condon
	principle, dissociation and predissociation spectra. $\pi \rightarrow \pi^*$, $n \rightarrow \pi^*$
	transitions and their selection rules. Photoelectron Spectroscopy: Basic
	principles, photoelectron spectra of simple molecules, Xray
	photoelectron spectroscopy (XPS). Lasers: Laser action, population
	inversion, properties of laser radiation, examples of simple laser
	systems.
	UNIT-IV: NMR and Mass Spectrometry: Chemical shift, Factors
	influencing chemical shifts: electronegativity and electrostatic effects;
	Mechanism of shielding and deshielding. Spin systems: First order and
	second order coupling of AB systems, Simplification of complex
	spectra. Spin-spin interactions: Homonuclear coupling interactions -

	AX, AX2, AB types. Vicinal, germinal and long-range coupling-spin
	decoupling. Nuclear Overhauser effect (NOE), Factors influencing
	coupling constants and Relative intensities. ¹³ C NMR and structural
	correlations – DEPT. Brief introduction to 2D NMR – COSY, NOESY
	and HETCOR. Introduction to ³¹ P, ¹⁹ F NMR. Mass Spectrometry:
	Mass Spectrometry: Ionization techniques- Electron ionization (EI),
	chemical ionization (CI), desorption ionization (FAB/MALDI),
	electrospray ionization (ESI), isotope abundance, molecular ion,
	fragmentation processes of organic molecules, deduction of structure
	through mass spectral fragmentation, high resolution. Effect of isotopes
	on the appearance of mass spectrum.
	Structural elucidation of organic compounds by combined spectral
	techniques.
	UNIT-V: ESR and Mossbauer Spectroscopy: ESR spectroscopy
	Characteristic features of ESR spectra, line shapes and line widths;
	ESR spectrometer. The g value and the hyperfine coupling parameter
	(A), origin of hyperfine interaction. Interpretation of ESR spectra and
	structure elucidation of organic radicals using ESR spectroscopy; Spin
	orbit coupling and significance of g-tensors, zero/non-zero field
	splitting, Kramer's degeneracy, application to transition metal
	complexes (having one to five unpaired electrons) including biological
	molecules and inorganic free radicals. ESR spectra of magnetically
	dilute samples.
	Principle of Mossbauer spectroscopy: Doppler shift, recoil energy.
	Isomer shift, quadrupole splitting, magnetic interactions. Applications:
	Mossbauer spectra of high and low-spin Fe and Sn compounds.
Recommended	1. C. N. Banwell and E. M. McCash, <i>Fundamentals of Molecular</i>
Text	Spectroscopy, 4 th Ed., Tata McGraw Hill, New Delhi, 2000.
	2. R. M. Silverstein and F. X. Webster, <i>Spectroscopic Identification</i> of Organic Compounds, 6 th Ed., John Wiley & Sons, New York,
	2003.
	3. W. Kemp, <i>Applications of Spectroscopy</i> , English Language Book Society, 1987.
	4. D. H. Williams and I. Fleming, Spectroscopic Methods in Organic
	Chemistry, 4 th Ed., Tata McGraw-Hill Publishing Company, New
	Delhi, 1988. 5. R. S. Drago, <i>Physical Methods in Chemistry</i> ; Saunders:
	Philadelphia, 1992.